Bayesian ridge regression shows the best fit for SSR markers in Psidium guajava among Bayesian models

نویسندگان

چکیده

Abstract Markers are an important tool in plant breeding, which can improve conventional phenotypic generating more accurate information outcoming better decision making. This study aimed to apply and compare the fit of different Bayesian models BRR, BayesA, BayesB, BayesB (setting value from very low $$\pi$$ π = $${10}^{-5}$$ 10 - 5 ), BayesC Lasso (LASSO) for predictions genomic genetic values productivity quality traits a guava population. The were fitted fruit mass, pulp soluble solids content, number, production per prediction with SSR markers, obtained through CTAB extraction method 200 primers. ridge regression model showed best results all was chosen predict individual’s according cross-validation data. A good stabilization Markov Monte Carlo chains observed mean close means. Heritabilities predictive accuracy. strong correlations between some traits, allowing indirect selection.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guava (Psidium guajava) | Feedipedia

Guava, common guava, yellow guava [English]; goyavier, goyave [French]; goiaba, guaiaba, guaiava, goiabeira, goiabeiro, araça-goiaba, araça-guaçu [Portuguese]; guayaba, guayabo, guayaba manzana [Spanish]; koejawel [Afrikaans]; guave [Dutch]; Echte Guave [German]; gweba [Hausa]; jambu batu, jambu biji [Indonesian]; guaiava [Italian]; jambu kluthuk [Javanese]; amapera [Kinyarwanda]; mpera [Kiswah...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Bayesian Polynomial Regression Models to Fit Multiple Genetic Models for Quantitative Traits.

We present a coherent Bayesian framework for selection of the most likely model from the five genetic models (genotypic, additive, dominant, co-dominant, and recessive) commonly used in genetic association studies. The approach uses a polynomial parameterization of genetic data to simultaneously fit the five models and save computations. We provide a closed-form expression of the marginal likel...

متن کامل

Bayesian Inference for Geostatistical Regression Models

The problem of simultaneous covariate selection and parameter inference for spatial regression models is considered. Previous research has shown that failure to take spatial correlation into account can influence the outcome of standard model selection methods. Often, these standard criteria suggest models that are too complex in an effort to compensate for spatial correlation ignored in the se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Reports

سال: 2021

ISSN: ['2045-2322']

DOI: https://doi.org/10.1038/s41598-021-93120-z